Publikationen
Die folgenden Publikationen geben einen Einblick in die Kompetenzen des KISSKI Konsortiums.
2024
Mit KISSKI-Mitteln finanzierte Publikationen
Q-SENN: Quantized Self-Explaining Neural Networks
Thomas Norrenbrock, Marco Rudolph, Bodo Rosenhahn
2024 / AAAI Technical Track on Safe, Robust and Responsible AI
Robust Shape Fitting for 3D Scene Abstraction
Florian Kluger, Eric Brachmann, Michael Ying Yang, Bodo Rosenhahn
2024 / IEEE transactions on pattern analysis and machine intelligence (TPAMI)
SplatPose and Detect: Pose-Agnostic 3D Anomaly Detection
Mathis Kruse, Marco Rudolph, Dominik Woiwode, Bodo Rosenhahn
2024 / CVPW-WS, VAND Visual Anomaly and Novelty Detection
PARSAC: Accelerating Robust Multi-Model Fitting with Parallel Sample Consensus
Florian Kluger, Bodo Rosenhahn
2024 / AAAI
Ausgewählte Publikationen des KISSKI-Konsortiums (ohne KISSKI-Mittel finanziert)
Privacy Protection Behaviors from a New Angle: Exploratory Analysis on a Russian Sample
Denis Obrezkov
2024 / Proceedings on Privacy Enhancing Technologies Symposium
FLATTEN: optical FLow-guided ATTENtion for consistent text-to-video editing
Cong,Yuren, Mengmeng Xu, Christian Simon, Shoufa Chen, Jiawei Ren, Yanping Xie, Juan-Manuel Perez-Rua, Bodo Rosenhahn, Xiang,Tao, Sen; He
2024 / International Conference on Learning Representations (ICLR)
2023
Mit KISSKI-Mitteln finanzierte Publikationen
Compensation Learning in Semantic Segmentation
Timo Kaiser, Christoph Reinders, Bodo; Rosenhahn
2023 / Computer Vision and Pattern Recognition Workshops (CVPRW)
HyperSparse Neural Networks: Shifting Exploration to Exploitation through Adaptive Regularization
Patrick Glandorf*, Timo Kaiser*, Bodo Rosenhahn, (*contributed equally)
2023 / International Conference on Computer Vision Workshops (ICCVW)
Personalized 3D Human Pose and Shape Refinement
Tom Wehrbein, Bodo Rosenhahn, Iain Matthews, Carsten; Stoll
2023 / International Conference on Computer Vision Workshops (ICCVW)
Human Spine Motion Capture using Perforated Kinesiology Tape
Hendrik Hachmann, Bodo Rosenhahn
2023 / Computer Vision and Pattern Recognition Workshops (CVPRW)
AutoML in heavily constrained applications
Felix Neutatz, Marius Lindauer, Ziawasch Abedjan
2023 / VLDB Journal
The voraus-AD Dataset for Anomaly Detection in Robot Applications
Jan Thieß Brockmann*, Marco Rudolph*, Bodo Rosenhahn, Bastian Wandt, (* equal contribution)
2023 / Transactions on Robotics
Ausgewählte Publikationen des KISSKI-Konsortiums (ohne KISSKI-Mittel finanziert)
Asymmetric Student-Teacher Networks for Industrial Anomaly Detection
Marco Rudolph, Tom Wehrbein, Bodo Rosenhahn, Bastian Wandt
2023
Learning Activation Functions for Sparse Neural Networks
Mohammed Loni, Aditya Mohan, Mehdi Asadi, Marius Lindauer
2023 / International Conference on Automated Machine Learning
Organizing Scholarly Knowledge in the Open Research Knowledge Graph An Open-Science Platform for FAIR Scholarly Knowledge
Sören Auer, Markus Stocker, Oliver Karras, Allard Oelen, Jennifer D'Souza, Anna-Lena Lorenz
2023
Increasing Reproducibility in Science by Interlinking Semantic Artifact Descriptions in a Knowledge Graph
Hassan Hussein, Kheir Eddine Farfar, Allard Oelen, Oliver Karras, Sören Auer
2023
KPI Extraction from Maintenance Work Orders — A Comparison of Expert Labeling, Text Classification and AI-Assisted Tagging for Computing Failure Rates of Wind Turbines
Marc-Alexander Lutz, Bastian Schäfermeier, Rachael Sexton, Michael Sharp, Alden Dima, Stefan Faulstich, Jagan Mohini Aluri
2023 / Energies
Optimization of Sparsity-Constrained Neural Networks as a Mixed Integer Linear Program
Bodo Rosenhahn
2023 / Journal of Optimization Theory and Applications
Multi-Resolution Segmentation of Solar Photovoltaic Systems Using Deep Learning
Maximilian Kleebauer, Christopher Marz, Christoph Reudenbach, Martin Braun
2023 / Remote Sensing
Towards FAIR Semantic Publishing of Research Dataset Metadata in the Open Research Knowledge Graph
Raia Abu Ahmad, Jennifer D'Souza, Matthäus Zloch, Wolfgang Otto, Georg Rehm, Allard Oelen, Stefan Dietze, Sören Auer
2023
Power flow forecasts at transmission grid nodes using Graph Neural Networks
Dominik Beinert, Clara Holzhüter, Josephine M. Thomas, Stephan Vogt
2023 / Energy and AI
RelTR: Relation Transformer for Scene Graph Generation
Yuren Cong, Michael Yang, Bodo; Rosenhahn
2023 / IEEE transactions on pattern analysis and machine intelligence (TPAMI)
Deep Reinforcement Learning for Autonomous Driving Using High-Level Heterogeneous Graph Representations
Maximilian Schier, Christoph Reinders, Bodo Rosenhahn
2023 / 2023 IEEE International Conference on Robotics and Automation (ICRA)
Secure HPC: A workflow providing a secure partition on an HPC system
Hendrik Nolte, Nicolai Spicher, Andrew Russel, Tim Ehlers, Sebastian Krey, Dagmar Krefting, Julian Kunkel
2023 / Future Generation Computer Systems
Targeted adversarial attacks on wind power forecasts
René Heinrich, Christoph Scholz, Stephan Vogt, Malte Lehna
2023 / Machine Learning
Exploiting Subword Permutations to Maximize CNN Compute Performance and Efficiency
Michael Beyer, Sven Gesper, Andre Guntoro, Guillermo Payá-Vayá, Holger Blume
2023 / International Conference on Application-specific Systems, Architectures and Processors (ASAP)
Contextualize Me - The Case for Context in Reinforcement Learning
Carolin Benjamins, Theresa Eimer, Frederik Schubert, Aditya Mohan, Sebastian Döhler, André Biedenkapp, Bodo Rosenhahn, Frank Hutter, Marius Lindauer
2023 / Transactions on Machine Learning Research
Governance-Centric Paradigm: Overcoming the Information Gap between Users and Systems by Enforcing Data Management Plans on HPC-Systems
Hendrik Nolte, Julian Kunkel
2023 / INFOCOMP
Improving the Interpretability of ECoG-Signals by Identifying Significant Signal-Segments with Explainable AI
Julian Drewljau, Mesbah Alam, Joachim Krauss, Kerstin Schwabe, Holger Blume
2023 / Abstracts of the 57th Annual Meeting of the German Society of Biomedical Engineering
N2V2PRO: Neural Network Mapping Framework for a Custom Vector Processor Architecture
Sven Gesper, Gia Bao Thieu, Daniel Köhler, Markus Kock, Tim Berthold, Oliver Renke, Holger Blume, Guillermo Payá-Vayá
2023 / International Conference on Consumer Electronics-Berlin (ICCE-Berlin)
ZuSE Ki-Avf: Application-Specific AI Processor for Intelligent Sensor Signal Processing in Autonomous Driving
Thieu, Gia Bao, et al.
2023 / Design, Automation & Test in Europe Conference & Exhibition (DATE)
2022
Ausgewählte Publikationen des KISSKI-Konsortiums (ohne KISSKI-Mittel finanziert)
AI agents envisioning the future: Forecast-based operation of renewable energy storage systems using hydrogen with Deep Reinforcement Learning
Alexander Dreher, Thomas Bexten, Tobias Sieker, Malte Lehna, Jonathan Schütt, Christoph Scholz, Manfred Wirsum
2022 / Energy Conversion and Management
Efficient Automated Deep Learning for Time Series Forecasting
Difan Deng, Florian Karl, Frank Hutter, Bernd Bischl, Marius Lindauer
2022 / European Conference on Machine Learning (ECML)
Constrained Mean Shift Clustering
Maximilian Schier, Christoph Reinders, Bodo Rosenhahn
2022 / Proceedings of the 2022 SIAM International Conference on Data Mining (SDM)
ChimeraMix: Image Classification on Small Datasets via Masked Feature Mixing
Christoph Reinders, Frederik Schubert, Bodo Rosenhahn
2022 / 31st International Joint Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence (IJCAI-ECAI)
Hands-free AutoML via Meta-Learning
Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, Frank Hutter
2022 / Journal of Machine Learning Research
LMGP: Lifted Multicut Meets Geometry Projections for Multi-Camera Multi-Object Tracking
Duy Nguyen, Roberto Henschel, Bodo Rosenhahn, Daniel Sonntag, Paul Swoboda
2022 / Computer Vision and Pattern Recognition (CVPR)
A Reinforcement Learning approach for the continuous electricity market of Germany: Trading from the perspective of a wind park operator
Malte Lehna, Björn Hoppmann, Christoph Scholz, René Heinrich
2022 / Energy and AI
Secure Authorization for RESTful HPC Access with FaaS Support
Christian Köhler, Mohammed Hossein Biniaz, Sven Bingert, Hendrik Nolte, Julian Kunkel
2022 / International Journal on Advances in Security
Performance Evaluation of Open-Source Serverless Platforms for Kubernetes
Jonathan Decker, Piotr Kasprzak, Julian Martin Kunkel
2022 / Algorithms
Take 5: Interpretable Image Classification with a Handful of Features
Thomas Norrenbrock, Marco Rudolph, Bodo; Rosenhahn
2022 / Progress and Challenges in Building Trustworthy Embodied AI @NeurIPS
Predictive accuracy of CNN for cortical oscillatory activity in an acute rat model of parkinsonism
Ali Abdul Nabi Ali, Mesbah Alam, Simon Klein, Nicolai Behmann, Joachim K. Krauss, Theodor Doll, Holger Blume, Kerstin Schwabe
2022 / Neural Networks
2021
Ausgewählte Publikationen des KISSKI-Konsortiums (vor KISSKI-Projektbeginn)
Auto-Pytorch: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL
Lucas Zimmer, Marius Lindauer, Frank Hutter
2021 / IEEE Transactions on Pattern Analysis and Machine Intelligence
Autoencoder-based anomaly root cause analysis for wind turbines
Cyriana M.A. Roelofs, Marc-Alexander Lutz, Stefan Faulstich, Stephan Vogt
2021 / Energy and AI
Compact representations for efficient storage of semantic sensor data
Farah Karim, Maria-Esther Vidal, Sören Auer
2021
Probabilistic Monocular 3D Human Pose Estimation with Normalizing Flows
Tom Wehrbein, Marco Rudolph, Bodo Rosenhahn, Bastian Wandt
2021 / International Conference on Computer Vision (ICCV)
Semi-automatic generation of training samples for detecting renewable energy plants in high-resolution aerial images
Maximilian Kleebauer, Daniel Horst, Christopher Reudenbach
2021 / Remote Sensing
Fixed Point Analysis Workflow for efficient Design of Convolutional Neural Networks in Hearing Aids
Simon Klein, Jonas Kantic, Holger Blume
2021 / Current Directions in Biomedical Engineering